Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489938

RESUMO

Real-time measurement and characterization of laser-driven proton beams have become crucial with the advent of high-repetition-rate laser acceleration. Common passive diagnostics such as radiochromic film (RCF) are not suitable for real-time operation due to time-consuming post-processing; therefore, a novel approach is needed. Various scintillator-based detectors have recently gained interest as real-time substitutes to RCF-thanks to their fast response for a wide range of dose deposition rates. This work introduces a compact, scalable, and cost-effective scintillator-based device for proton beam measurements in real-time suitable for the laser-plasma environment. An advanced signal processing technique was implemented based on detailed Monte Carlo simulations, enabling an accurate unfolding of the proton energy and the depth-dose deposition curve. The quenching effect was accounted for based on Birks' law with the help of the Monte Carlo simulations. The detector was tested in a proof-of-principle experiment at a conventional cyclotron accelerating protons up to 35 MeV of energy. The signal comparison with a standard RCF stack was also performed during the test of the device, showing an excellent agreement between the two diagnostics. Such devices would be suitable for both conventional and laser-driven proton beam characterization.

2.
Front Oncol ; 11: 682647, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34262867

RESUMO

Protontherapy is a rapidly expanding radiotherapy modality where accelerated proton beams are used to precisely deliver the dose to the tumor target but is generally considered ineffective against radioresistant tumors. Proton-Boron Capture Therapy (PBCT) is a novel approach aimed at enhancing proton biological effectiveness. PBCT exploits a nuclear fusion reaction between low-energy protons and 11B atoms, i.e. p+11B→ 3α (p-B), which is supposed to produce highly-DNA damaging α-particles exclusively across the tumor-conformed Spread-Out Bragg Peak (SOBP), without harming healthy tissues in the beam entrance channel. To confirm previous work on PBCT, here we report new in-vitro data obtained at the 62-MeV ocular melanoma-dedicated proton beamline of the INFN-Laboratori Nazionali del Sud (LNS), Catania, Italy. For the first time, we also tested PBCT at the 250-MeV proton beamline used for deep-seated cancers at the Centro Nazionale di Adroterapia Oncologica (CNAO), Pavia, Italy. We used Sodium Mercaptododecaborate (BSH) as 11B carrier, DU145 prostate cancer cells to assess cell killing and non-cancer epithelial breast MCF-10A cells for quantifying chromosome aberrations (CAs) by FISH painting and DNA repair pathway protein expression by western blotting. Cells were exposed at various depths along the two clinical SOBPs. Compared to exposure in the absence of boron, proton irradiation in the presence of BSH significantly reduced DU145 clonogenic survival and increased both frequency and complexity of CAs in MCF-10A cells at the mid- and distal SOBP positions, but not at the beam entrance. BSH-mediated enhancement of DNA damage response was also found at mid-SOBP. These results corroborate PBCT as a strategy to render protontherapy amenable towards radiotherapy-resilient tumor. If coupled with emerging proton FLASH radiotherapy modalities, PBCT could thus widen the protontherapy therapeutic index.

3.
Phys Rev E ; 101(1-1): 013204, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32069635

RESUMO

The nuclear reaction known as proton-boron fusion has been triggered by a subnanosecond laser system focused onto a thick boron nitride target at modest laser intensity (∼10^{16}W/cm^{2}), resulting in a record yield of generated α particles. The estimated value of α particles emitted per laser pulse is around 10^{11}, thus orders of magnitude higher than any other experimental result previously reported. The accelerated α-particle stream shows unique features in terms of kinetic energy (up to 10 MeV), pulse duration (∼10 ns), and peak current (∼2 A) at 1 m from the source, promising potential applications of such neutronless nuclear fusion reactions. We have used a beam-driven fusion scheme to explain the total number of α particles generated in the nuclear reaction. In this model, protons accelerated inside the plasma, moving forward into the bulk of the target, can interact with ^{11}B atoms, thus efficiently triggering fusion reactions. An overview of literature results obtained with different laser parameters, experimental setups, and target compositions is reported and discussed.

4.
Anticancer Res ; 39(5): 2265-2276, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31092418

RESUMO

The aim of this review was to define appropriate 11B delivery agents for boron proton-capture enhanced proton therapy (BPCEPT) taking into account the accumulated knowledge on boron compounds used for boron neutron capture therapy (BNCT). BPCEPT is a promising treatment approach which uses a high linear energy transfer (LET) dose component in conjunction with conventional proton therapy to increase the relative biological effectiveness of highly-selective charged particle therapy. Boron proton fusion reactions occur with highest cross section at certain proton energy level and thus can be tailored to the target volume with careful treatment planning that defines the 675 MeV proton distribution with high accuracy. Appropriate 11B compounds are required in order to achieve relevant high LET dose contribution from the boron proton-capture reaction. Previous scientific results and experiences with BNCT provide background knowledge and information regarding the optimization of boronated compound development, their characterization, measurement and imaging. However, there are substantial differences between BNCT and BPCEPT, which in turn places special unique chemical, physical and biological demands on 11B-carrier compounds for BPCEPT. In this review, we evaluate well-known and recently developed boron compounds for BPCEPT.


Assuntos
Terapia por Captura de Nêutron de Boro/métodos , Boro/uso terapêutico , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/patologia , Humanos , Transferência Linear de Energia , Prótons
6.
Front Oncol ; 7: 223, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28971066

RESUMO

The CATANA proton therapy center was the first Italian clinical facility making use of energetic (62 MeV) proton beams for the radioactive treatment of solid tumors. Since the date of the first patient treatment in 2002, 294 patients have been successful treated whose majority was affected by choroidal and iris melanomas. In this paper, we report on the current clinical and physical status of the CATANA facility describing the last dosimetric studies and reporting on the last patient follow-up results. The last part of the paper is dedicated to the description of the INFN-LNS ongoing activities on the realization of a beamline for the transport of laser-accelerated ion beams for future applications. The ELIMED (ELI-Beamlines MEDical and multidisciplinary applications) project is introduced and the main scientific aspects will be described.

7.
Opt Express ; 23(9): 11641-56, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25969256

RESUMO

The focusing property of a focal spot of a femtosecond laser pulse is presented under tight focusing conditions (below f-number of 1). The spatial and temporal intensity distributions of a focused electric field are calculated by vector diffraction integrals and coherent superposition method. The validity of the calculation method is examined by comparing the intensity distribution obtained under a high f-number condition to that obtained with the fast Fourier transform method that assumes the scalar paraxial approximation. The spatial and temporal modifications under tight focusing conditions are described for a focused femtosecond laser pulse. The calculation results show that a peak intensity of about 2.5x10(24) W/cm2 can be achievable by tightly focusing a 12-fs, 10 PW laser pulse with a f/0.5 parabolic optic. The precise information on intensity distributions of a femtosecond focal spot obtained under a tight focusing condition will be crucial in assessing a focused intensity and in describing the motion of charged particles under an extremely strong electric field in ultra-relativistic and/or relativistic laser matter-interaction studies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...